Memo_稳定人口各指标变动影响

按查瑞传《数理人口学》、凯菲兹《应用数理人口学》,就稳定人口各指标变动的推导作简要记录。

一、稳定人口基本方程

b=10ωeral(a)da(1)c(a)=beral(a)(2)ψ(a)=αβeral(a)ϕ(a)da=1(3)l(a)=e0aμ(a)da(4)\begin{aligned} &b=\frac{1}{\int_0^\omega e^{-r a} l(a) d a} \qquad(1) \\ &c(a)=b e^{-r a} l(a) \qquad(2) \\ &\psi(a)=\int_\alpha^\beta e^{-r a} l(a) \phi(a) d a=1 \qquad(3) \\ &l(a)=e^{-\int_0^a \mu(a) d a} \qquad(4) \end{aligned}

二、ϕ(a)\phi(a) 变动影响

1. ϕ(a)\phi(a) 等比例变动对rr的影响

ϕ(a)=ekaϕ(a)1=αβeral(a)ϕ(a)da  =αβeral(a)ϕ(a)ekada  =αβe(rk)al(a)ϕ(a)da1=αβeral(a)ϕ(a)da=1(3)(rk)=rr=r+kϕ(a)k>0rϕ(a)k<0r\begin{aligned} &\phi^{\prime}(a)=e^{k a} \phi(a) \\ &1=\int_\alpha^\beta e^{-r^{\prime} a} l(a) \phi^{\prime}(a) d a \\ &\quad\ \ =\int_\alpha^\beta e^{-r^{\prime} a} l(a) \phi(a) e^{k a} d a \\ &\quad\ \ =\int_\alpha^\beta e^{-\left(r^{\prime}-k\right) a} l(a) \phi(a) d a \\ &1=\int_\alpha^\beta e^{-r a} l(a) \phi(a) d a=1 \qquad(3) \\ &-\left(r^{\prime}-k\right)=r \\ &r^{\prime}=r+k \\ &\phi^{\prime}(a) \uparrow \quad k>0 \quad r^{\prime} \uparrow \\ &\phi^{\prime}(a) \downarrow \quad k<0 \quad r^{\prime} \downarrow \end{aligned}

2. ϕ(a)\phi(a) 某一岁变动对rr的影响

ex1+x,eΔra(1Δra)e(r+Δr)a=eraeΔra  =era(1Δra)\begin{aligned} &e^x \doteq 1+x ,\quad e^{-\Delta r a} \doteq (1-\Delta r \cdot a) \\ &e^{-(r+\Delta r) a} = e^{-r a} \cdot e^{-\Delta r a} \\ &\quad\ \ = e^{-r a}(1-\Delta r a) \end{aligned}

1=αβe(r+Δr)al(a)[m(a)+Δm(x)]da  =αβe(r+Δr)al(a)m(a)da+e(r+Δr)xl(x)Δm(x)  =αβera(1Δra)l(a)m(a)da+C  =αβeral(a)m(a)daΔrαβeral(a)m(a)a+C\begin{aligned} &1=\int_\alpha^\beta e^{-(r+\Delta r) a} l(a)[m(a)+\Delta m(x)] d a \\ &\quad\ \ =\int_\alpha^\beta e^{-(r+\Delta r) a} l(a) m(a) d a+e^{-(r+\Delta r) x} l(x)\Delta m(x) \\ &\quad\ \ =\int_\alpha^\beta e^{-r a}(1-\Delta r a) l(a) m(a) d a+C \\ &\quad\ \ =\int_\alpha^\beta e^{-r a} l(a) m(a) d a-\Delta r \int_\alpha^\beta e^{-r a} l(a) m(a) a+C \end{aligned}

1Δrμ+C=1C=ΔrμΔrμ=e(r+Δr)xl(x)Δm(x)  =erx(1Δrx)l(x)Δm(x)  =erxl(x)Δm(x)Δr=erxl(x)Δm(x)μ\begin{aligned} &1-\Delta r \cdot \mu+C=1 \\ &C=\Delta r \cdot \mu \\ &\Delta r \cdot \mu = e^{-(r+\Delta r) x} l(x) \Delta m(x) \\ &\quad\ \ = e^{-r x}(1-\Delta r x) l(x) \Delta m(x) \\ &\quad\ \ = e^{-r x} l(x) \Delta m(x) \\ &\Delta r =\frac{e^{-r x} l(x) \Delta m(x)}{\mu} \end{aligned}

此外有l(a)l(a)NRRNRRTT等变动影响,余略。参见笔记